Механический протез пальца кисти



Специалисты компании Naples, находящейся во Флориде, спроектировали механические пальцы, протезы, которые полностью подражают естественным частям тела человека без использования всякой электроники. Механические части протеза, состоящие из железных рычагов, приводятся в движение тягами, имплантированными в остатки потерянного пальца пациента. Для придания протезам вида, имитирующего человеческое тело, эти протезы покрыты слоем специального термоплатика, что придает им естественный вид и естественные ощущения при прикосновении к ним.

Используя эти протезы пациенты могут делать даже операции, требующие высокой точности движений, поднять монету с плоской поверхности, нажимать на кнопки, завязать шнурки на обуви, писать ручкой текст на бумаге и даже играть на фортепиано. Дэн Дидрик (Dan Didrick), основатель компании Didrick Medical, которая занимается изготовлением протезов X-Finger, сказал, что разработка этих механических протезов является огромным прыжком вперед по сравнению с использование старых латексных протезов, функцией которых является только маскировка недостатка.

Протезы X-Finger начали выпускаться в промышленных масштабах, они бываю 500 различных видов, охватывающих комбинации из пяти различных толщин пальцев, шестнадцати различных длин и других характеристик. Но самым примечательным в этом устройстве - этот то, что оно позволяет человеку получить полный контроль над протезом утерянной конечности в реалистичном виде без использования всякой электроники.





Mechanical Fingers Give Strength, Speed to Amputees


If the X-Finger looks like a prop from The Terminator, relax. It isn't out to kill you, and it isn't robotic. In fact, it's a mechanical prosthetic finger so effective it provides articulation as fast and flexible as the real thing.

Invented by Dan Didrick of Naples, Florida, the device has no batteries, electronics, servos or actuators. Instead, each digit incorporates a simple mechanism which, when pushed by the surviving part of the wearer's finger, curls a set of artificial phalanges.

"Having a body-powered device leaves little room for mechanical failure," Didrick said, adding that there aren't any robotic medical alternatives. "Many people assumed a device such as mine already existed."


In practice, however, robotic fingers are always attached to robotic hands and arms. Losing an entire limb, however unpleasant, allows the prosthetic manufacturer more room to conceal complicated electronics.

About one in 150 people have lost a digit to war, misadventure or misfortune.

Made of steel and blue plastic, Didrick's X-Finger allows for a surprising degree of dexterity: Enough to grip (and swing) a golf club, operate a keyboard or even play musical instruments.

When the wearer bends the remaining portion of his or her finger, the tight fit causes it to depress a lever on the X-Finger, articulating the device in proportion to the pressure exerted.

The precision mechanism guides the digit's movements to match those of adjacent fingers, creating an uncannily realistic prosthesis where it counts most: mobility, power and accuracy.

In May, Didrick was awarded second prize in the History Channel's Modern Marvels Invent Now Challenge, beating thousands of other entries to claim a $5,000 award.

The X-Finger, which currently costs thousands of dollars per digit, might seem expensive to prospective buyers. But it's not a get-rich-quick scheme for its inventor: Didrick, 37, sold his house, his Porsche and many of his personal possessions to help fund development, and he draws only a modest salary from sales of his invention.

"We only receive a fraction of the overall costs ourselves," Didrick said. "Also, many people would be surprised to learn that a cosmetic silicone artificial finger, offering only passive function, with no mechanical structure, can cost $5,500 from an anaplastologist."

Didrick's X-Finger works much like a real finger, with its flexing motion actuated by movements in the surviving parts of the wearer's finger and hand.

Manufacturing is currently taken care of by a firm in California, but it is able to make only a few fingers a week. Investment will expedite production, Didrick hopes.



Didrick started out as a maker of realistic monster masks, and eventually moved to Japan, where he planned to work at the movies. Though Didrick didn't make a career articulating Gojira's mighty digits, he noticed that many workers in heavily industrialized Kawasaki were missing their own. After crafting a silicone replacement for a stranger at a party, word spread and he was soon supplying artificial fingers to inattentive machine operators.

Returning to America, he found a patient who needed a more versatile facsimile, leading him to study anatomy and invest in CAD software. Six years later, the resulting invention is a commercial reality.

The finger, however, is only the beginning. Didrick is already working on an entire hand articulated in similar fashion using the wrist, and has been approached to craft toes using the same principle.

"Our new approach to prosthetic technology will have a significant impact, not only on the thousands of lives it will change, but also to spark the ingenuity of our youth to develop new technologies for the future."



  • Повреждение сухожилий сгибателей

    imagesFlexor Tendon из книги" HAND AND UPPER EXTREMITY REHABILITATION"
    Mary Formby
    The healing of the repaired flexor tendon is at least a 6-month process. The “best” way to manage the first 12-week period remains controversial despite significant research and clinical advances over the last 50 years. Effective communication among surgeon, therapist, and patient throughout the rehabilitation process is essential for achievement of a successful outcome.

    Tendon healing occurs by both intrinsic and extrinsic processes.1 When intrinsic healing dominates, few adhesions form, and the result is more freely gliding tendons. Tendons with fewer adhesions must be carefully protected from resistive use, because they may be at greater risk for rupture. The rehabilitation timeline for such patients may need to be slowed. When extrinsic healing dominates, an increased inflammatory response occurs as the result of high-energy injury, postsurgical infection, or other factors. These patients have poorer tendon glide and may need their rehabilitation timeline advanced more quickly. Because each person’s biological response to healing is different, a “pyramid-of-force” model2 for flexor tendon rehabilitation was proposed by Groth in 2004. This model is based on a progression of force application that safely maximizes tendon excursion. Both time-based protocols and Groth’s new rehabilitation model are presented in this chapter.

  • Пластика сухожилий сгибателей пальцев кисти у детей.

    Тезисы Национального конгресса "пластическая хирургия»

    Волков В В , Александров А В, Рыбченок В В , Подшивалова О А, Львов Н В
    Актуальность: Лечение больных с повреждением сухожилий сгибателей кисти остается одной из сложных проблем кистевой хирургии у детей. Актуальность и острота этой проблемы обусловлена следующими факторами.
    - Высокий уровень повреждений кисти в структуре общего травматизма детского возраста.
    - Высокий уровень повреждений сухожилий среди всех ран кисти.
    - Неудовлетворительный результат лечения (47%).
    - Высокий уровень инвалидизации (21%-28% по данным ВТЭК).
    - Отсутствие единой точки зрения на протокол лечения.
    В детской хирургии, повреждение сухожилий встречаются реже чем у взрослых и чаще носят бытовой характер, также встречаются чаще у детей дошкольной и школьной группы. И составляют 48 % от всех случаев травмы кисти.
    Цель и задачи работы: Улучшить ближайшие и отдаленные результаты лечения больных с повреждениями сухожилий сгибателей пальцев кисти.